论文标题

通过多尺度对比度学习网络与增强视图图形检测

Graph Anomaly Detection via Multi-Scale Contrastive Learning Networks with Augmented View

论文作者

Duan, Jingcan, Wang, Siwei, Zhang, Pei, Zhu, En, Hu, Jingtao, Jin, Hu, Liu, Yue, Dong, Zhibin

论文摘要

图异常检测(GAD)是基于图形的机器学习中的重要任务,并且已广泛应用于许多现实世界中。 GAD的主要目标是从图形数据集中捕获异常节点,显然与大多数节点偏离。最近的方法已关注GAD的各种对比策略,即节点 - 套图和节点节点的对比。但是,他们忽略了子图表的比较信息,而正常和异常子图对在GAD中的嵌入和结构方面的行为不同,从而导致了次优的任务性能。在本文中,我们在提议的多视图对比度学习框架中履行了上述想法,并在首次实践中具有子图形纸的对比度。要具体而言,我们将原始输入图视为第一个视图,并通过带有边缘修改的图形增强来生成第二视图。在最大化子图对的相似性的指导下,提出的子图纸对比度有助于尽管结构变化,从而有助于更健壮的子图嵌入。此外,引入的子图纸对比与广泛的式节点 - 套图和节点节点对比度相对良好,以促进共同的GAD性能促进。此外,我们还进行了足够的实验,以研究不同图扩大方法对检测性能的影响。与最先进的方法相比,全面的实验结果很好地证明了我们方法的优越性以及对GAD任务的多视图子图对比对比策略的有效性。

Graph anomaly detection (GAD) is a vital task in graph-based machine learning and has been widely applied in many real-world applications. The primary goal of GAD is to capture anomalous nodes from graph datasets, which evidently deviate from the majority of nodes. Recent methods have paid attention to various scales of contrastive strategies for GAD, i.e., node-subgraph and node-node contrasts. However, they neglect the subgraph-subgraph comparison information which the normal and abnormal subgraph pairs behave differently in terms of embeddings and structures in GAD, resulting in sub-optimal task performance. In this paper, we fulfill the above idea in the proposed multi-view multi-scale contrastive learning framework with subgraph-subgraph contrast for the first practice. To be specific, we regard the original input graph as the first view and generate the second view by graph augmentation with edge modifications. With the guidance of maximizing the similarity of the subgraph pairs, the proposed subgraph-subgraph contrast contributes to more robust subgraph embeddings despite of the structure variation. Moreover, the introduced subgraph-subgraph contrast cooperates well with the widely-adopted node-subgraph and node-node contrastive counterparts for mutual GAD performance promotions. Besides, we also conduct sufficient experiments to investigate the impact of different graph augmentation approaches on detection performance. The comprehensive experimental results well demonstrate the superiority of our method compared with the state-of-the-art approaches and the effectiveness of the multi-view subgraph pair contrastive strategy for the GAD task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源