论文标题
基于松弛的可调阻尼会导致稳健性与腿部运动的效率之间的权衡
Slack-based tunable damping leads to a trade-off between robustness and efficiency in legged locomotion
论文作者
论文摘要
动物在各种地形上奔跑。这种运动的鲁棒性令人困惑,因为轴突传导速度仅限于每秒几十米。如果Reflex循环提供具有重大延迟的感官信息,则人们会期望对感觉运动控制会有不稳定的影响。因此,另一种解释描述了低级自适应力学和高级感觉运动控制的层次结构,以帮助减轻传输延迟的影响。由自适应机制引发立即反应的概念的动机,我们开发了可调的物理阻尼系统。我们的机制结合了肌腱与可调节的松弛度连接到物理阻尼器。松散的阻尼器允许调整阻尼力,发作时间,有效的中风和能量耗散。我们表征安装在开环模式控制的腿机器人上的松弛阻尼机构。机器人垂直跳跃,并在不同的地形和扰动上进行平面。在前进过程中,基于松弛的阻尼以更高的能量成本(27%)改善了更快的扰动恢复(高达170%)。可调的松弛机制在扰动过程中自动引起阻尼器,从而导致触发触发阻尼,从而以最低的能量成本提高了稳健性。根据松弛阻尼器机制的结果,我们提出了一种新的功能解释,将动物的冗余肌腱作为可调阻尼器。
Animals run robustly in diverse terrain. This locomotion robustness is puzzling because axon conduction velocity is limited to a few ten meters per second. If reflex loops deliver sensory information with significant delays, one would expect a destabilizing effect on sensorimotor control. Hence, an alternative explanation describes a hierarchical structure of low-level adaptive mechanics and high-level sensorimotor control to help mitigate the effects of transmission delays. Motivated by the concept of an adaptive mechanism triggering an immediate response, we developed a tunable physical damper system. Our mechanism combines a tendon with adjustable slackness connected to a physical damper. The slack damper allows adjustment of damping force, onset timing, effective stroke, and energy dissipation. We characterize the slack damper mechanism mounted to a legged robot controlled in open-loop mode. The robot hops vertically and planar over varying terrains and perturbations. During forward hopping, slack-based damping improves faster perturbation recovery (up to 170%) at higher energetic cost (27%). The tunable slack mechanism auto-engages the damper during perturbations, leading to a perturbation-trigger damping, improving robustness at minimum energetic cost. With the results from the slack damper mechanism, we propose a new functional interpretation of animals' redundant muscle tendons as tunable dampers.