论文标题
具有磁场的均匀二维材料的密度功能理论
Density functional theory for homogeneous two dimensional materials with magnetic fields
论文作者
论文摘要
本文在恒定垂直磁场下研究了3D空间中均质2D材料的DFT模型。我们展示了如何将三维能量功能降低到一个维度的功能,就像我们以前的工作一样。这是通过将磁翻译下不变的状态和与Landau操作员上下班的状态最小化来完成的。在简化的模型中,保利原理不再出现。它被能源中的惩罚术语所取代。
This paper studies DFT models for homogeneous 2D materials in 3D space, under a constant perpendicular magnetic field. We show how to reduce the three--dimensional energy functional to a one--dimensional one, similarly as in our previous work. This is done by minimizing over states invariant under magnetic translations and that commute with the Landau operator. In the reduced model, the Pauli principle no longer appears. It is replaced by a penalization term in the energy.