论文标题

基于进化的量子体系结构搜索

Evolutionary-based quantum architecture search

论文作者

Zhang, Anqi, Zhao, Shengmei

论文摘要

量子体系结构搜索(QAS)需要构建功能强大且通用的QAS平台,该平台可以显着加速易错的量子和深度限制量子电路的量子量中间级量子(NISQ)时代。在本文中,我们提出了一种基于进化的量子体系结构搜索(EQAS)方案,以平衡更高表达能力和可训练能力。在EQA中,首先将量子电路的每个布局(即量子电路结构(QCA))编码为二进制字符串,后来称为量子基因。然后,根据相应的量子Fisher信息矩阵(QFIM)的特征值执行以去除QCA中冗余参数的算法。稍后,每个QCA将通过归一化的适应性进行评估,因此可以通过轮盘赌轮选择策略获得采样率来对母体产生进行采样。此后,使用突变和交叉来获得下一代。 EQA通过三个数据集的量子机学习中的分类任务来验证EQA。结果表明,所提出的EQA可以搜索具有较少参数化门的最佳QCA,并且通过在三个数据集上采用EQA来获得较高的精确度。

Quantum architecture search (QAS) is desired to construct a powerful and general QAS platform which can significantly accelerate quantum advantages in error-prone and depth limited quantum circuits in today Noisy Intermediate-Scale Quantum (NISQ) era. In this paper, we propose an evolutionary-based quantum architecture search (EQAS) scheme for the optimal layout to balance the higher expressive power and the trainable ability. In EQAS, each layout of quantum circuits, i.e quantum circuit architecture(QCA), is first encoded into a binary string, which is called quantum genes later. Then, an algorithm to remove the redundant parameters in QCA is performed according to the eigenvalues of the corresponding quantum Fisher information matrix (QFIM). Later, each QCA is evaluated by the normalized fitness, so that the sampling rate could be obtained to sample the parent generation by the Roulette Wheel selection strategy. Thereafter, the mutation and crossover are applied to get the next generation. EQAS is verified by the classification task in quantum machine learning for three datasets. The results show that the proposed EQAS can search for the optimal QCA with less parameterized gates, and the higher accuracies are obtained by adopting EQAS for the classification tasks over three dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源