论文标题

操作员半群的衰减,无限的可采用性和相关的分解估计值

Decay of Operator Semigroups, Infinite-time Admissibility, and Related Resolvent Estimates

论文作者

Wakaiki, Masashi

论文摘要

我们从$ l^p $ - infinite的可接受性和相关的分解估计的角度研究有限的$ C_0 $ -Semigroups的衰减率。在希尔伯特空间设置中,半群轨道的多项式衰减的特征是右半平面中的分解行为。基于$ l^p $ - infinite时间可接受性的类似表征,用于$ 1 \ leq q \ leq q \ leq p <\ infty $。对于Hilbert Space上的多项式稳定$ C_0 $ -Semigroups,我们还为$ l^2 $ -infinite的可接受性提供了足够的条件。

We study decay rates for bounded $C_0$-semigroups from the perspective of $L^p$-infinite-time admissibility and related resolvent estimates. In the Hilbert space setting, polynomial decay of semigroup orbits is characterized by the resolvent behavior in the open right half-plane. A similar characterization based on $L^p$-infinite-time admissibility is provided for multiplication semigroups on $L^q$-spaces with $1 \leq q \leq p < \infty$. For polynomially stable $C_0$-semigroups on Hilbert spaces, we also give a sufficient condition for $L^2$-infinite-time admissibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源