论文标题

椭圆形的统治表面在任意特征领域

Elliptic ruled surfaces over arbitrary characteristic fields

论文作者

Togashi, Takato, Uehara, Hokuto

论文摘要

Atiyah在椭圆曲线$ e $上对矢量捆绑包上的任何特征的代数封闭字段上进行了分类。另一方面,$ e $上的排名$ 2 $ vector Bundle定义了$ \ mathbb {p}^1 $ -Bundle结构$ e $的表面$ s $。我们研究$ s $根据Atiyah的分类具有椭圆形纤维化,以及出现什么样的奇异纤维。

Atiyah classifies vector bundles on elliptic curves $E$ over an algebraically closed field of any characteristic. On the other hand, a rank $2$ vector bundle on $E$ defines a surface $S$ with a $\mathbb{P}^1$-bundle structure on $E$. We study when $S$ has an elliptic fibration according to the Atiyah's classification, and what kinds of singular fibers appear.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源