论文标题

haagerup限制为Quaternionic Grothendieck不平等

Haagerup bound for quaternionic Grothendieck inequality

论文作者

Friedland, Shmuel, Lai, Zehua, Lim, Lek-Heng

论文摘要

我们在这里介绍了季节偏斜领域的几个版本的Grothendieck不平等:第一个是矩形矩阵的标准Grothendieck不平等,而自相关矩阵的另外两个不平等现象,正如最近在最近一篇论文中的第一和最后一位作者所介绍的那样。我们给出了``conic grothendieck不平等''的几个结果:作为Nesterov $π/2 $ -Theorem,对应于阳性半金属矩阵的锥; Goemans - 意愿不平等,与加权拉普拉斯人的锥相对应;对角矩阵。本文最具挑战性的技术部分是证明了Haagerup类似物的证明,导致超几何函数的倒数$ x {} _2f_1(\ frac {1} {2} {2} {2},\ frac {1} {2} {2} {2} {2}; 3; x^2)

We present here several versions of the Grothendieck inequality over the skew field of quaternions: The first one is the standard Grothendieck inequality for rectangular matrices, and two additional inequalities for self-adjoint matrices, as introduced by the first and the last authors in a recent paper. We give several results on ``conic Grothendieck inequality'': as Nesterov $π/2$-Theorem, which corresponds to the cones of positive semidefinite matrices; the Goemans--Williamson inequality, which corresponds to the cones of weighted Laplacians; the diagonally dominant matrices. The most challenging technical part of this paper is the proof of the analog of Haagerup result that the inverse of the hypergeometric function $x {}_2F_1(\frac{1}{2}, \frac{1}{2}; 3; x^2)$ has first positive Taylor coefficient and all other Taylor coefficients are nonpositive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源