论文标题
使用生物学上合理的尖峰延迟代码和获胜者抑制的有效多尺度表示视觉对象
Efficient multi-scale representation of visual objects using a biologically plausible spike-latency code and winner-take-all inhibition
论文作者
论文摘要
深度神经网络在关键视觉挑战(例如对象识别)中超过了人类的表现,但需要大量的能量,计算和记忆。相比之下,尖峰神经网络(SNN)具有提高对象识别系统的效率和生物合理性的潜力。在这里,我们提出了一种使用Spike-Latency编码和赢家全部抑制(WTA-I)的SNN模型,以使用多尺度并行处理有效地表示视觉刺激。在早期视觉皮层中模仿神经元反应的特性,在将三个不同的空间频率(SF)通道进行预处理,然后将它们馈送到一层尖刺神经元中,其突触重量的突触权重使用尖峰触发依赖性依赖性塑性(STDP)进行更新。我们研究了代表对象的质量如何在不同的SF频段和WTA-I方案下变化。我们证明,调谐到三个SF的200个尖峰神经元的网络可以有效地表示每个神经元15个尖峰的对象。研究如何使用SNN中生物学上合理的学习规则来研究如何实施核心对象识别,这不仅可能进一步我们对大脑的理解,还可能导致新颖而有效的人工视觉系统。
Deep neural networks have surpassed human performance in key visual challenges such as object recognition, but require a large amount of energy, computation, and memory. In contrast, spiking neural networks (SNNs) have the potential to improve both the efficiency and biological plausibility of object recognition systems. Here we present a SNN model that uses spike-latency coding and winner-take-all inhibition (WTA-I) to efficiently represent visual stimuli using multi-scale parallel processing. Mimicking neuronal response properties in early visual cortex, images were preprocessed with three different spatial frequency (SF) channels, before they were fed to a layer of spiking neurons whose synaptic weights were updated using spike-timing-dependent-plasticity (STDP). We investigate how the quality of the represented objects changes under different SF bands and WTA-I schemes. We demonstrate that a network of 200 spiking neurons tuned to three SFs can efficiently represent objects with as little as 15 spikes per neuron. Studying how core object recognition may be implemented using biologically plausible learning rules in SNNs may not only further our understanding of the brain, but also lead to novel and efficient artificial vision systems.