论文标题

银河中心中心盘的演变:g-clouds的应用

The evolution of circumstellar discs in the Galactic Centre: an application to the G-clouds

论文作者

Owen, James E., Lin, Douglas N. C.

论文摘要

众所周知,银河中心在几乎没有Myrs之前发生了最近的明星形成剧集,这很可能产生了许多Tauri星星,主持了偶发性盘。已经提出,这些盘可能是被确定为``g-clouds''的紧凑而尘土飞扬的电源源。鉴于银河中心的敌对环境,我们研究了这些光盘经验的可能进化途径。我们计算了适用于银河中心圆盘的新外部光蒸发模型,该模型解释了风和尘埃吸收紫外线光子的次音。使用进化盘计算,我们发现光蒸发的快速截断会导致它们迅速增强到中心恒星。最终,一个积聚的偶然光盘具有一生的$ \ lyssim1〜 $ Myr,这将无法寿命足够长的时间来解释G-clouds。但是,我们确定了银河中心中心盘的新进化途径。通过光蒸发去除盘的材料可防止由于磁制动而导致的年轻恒星旋转,最终导致迅速旋转的年轻恒星将圆盘扭矩为``decretion Disc''状态,从而阻止了积聚。同时,碟片中的任何行星伴侣都会将其在其轨道外面捕获灰尘,从而关闭光蒸发。在此状态下,该光盘最多可以生存,最多可享受$ \ sim $ 10 MYR。与其他恒星的相遇可能会删除MYR时标上的星球,从而导致光蒸发重新启动,从而产生G-Cloud签名。 $ \ sim10 \%$的巨型行星分数可以解释观察到的G-clouds的数量。

The Galactic Centre is known to have undergone a recent star formation episode a few Myrs ago, which likely produced many T Tauri stars hosting circumstellar discs. It has been suggested that these discs may be the compact and dusty ionized sources identified as ``G-clouds''. Given the Galactic Centre's hostile environment, we study the possible evolutionary pathways these discs experience. We compute new external photoevaporation models applicable to discs in the Galactic Centre that account for the sub-sonic launching of the wind and absorption of UV photons by dust. Using evolutionary disc calculations, we find that photoevaporation's rapid truncation of the disc causes them to accrete onto the central star rapidly. Ultimately, an accreting circumstellar disc has a lifetime $\lesssim1~$Myr, which would fail to live long enough to explain the G-clouds. However, we identify a new evolutionary pathway for circumstellar discs in the Galactic Centre. Removal of disc material by photoevaporation prevents the young star from spinning down due to magnetic braking, ultimately causing the rapidly spinning young star to torque the disc into a ``decretion disc'' state which prevents accretion. At the same time, any planetary companion in the disc will trap dust outside its orbit, shutting down photoevaporation. The disc can survive for up to $\sim$10 Myr in this state. Encounters with other stars are likely to remove the planet on Myr timescales, causing photoevaporation to restart, giving rise to a G-cloud signature. A giant planet fraction of $\sim10\%$ can explain the number of observed G-clouds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源