论文标题

数据驱动的科学和机器学习方法激光 - 血浆物理学

Data-driven Science and Machine Learning Methods in Laser-Plasma Physics

论文作者

Döpp, Andreas, Eberle, Christoph, Howard, Sunny, Irshad, Faran, Lin, Jinpu, Streeter, Matthew

论文摘要

在过去的几十年中,随着高功率激光器既越来越强大又越来越广泛,激光 - 浮力物理学已经迅速发展。该领域的早期实验和数值研究仅限于具有有限参数探索的单发实验。但是,最近的技术改进使得在实验和模拟中收集越来越多的数据是可能的。这引发了人们对使用数学,统计和计算机科学的先进技术来处理和受益于大数据的兴趣。同时,复杂的建模技术还为研究人员提供了有效处理情况的新方法,在这种情况下,仍然只有稀疏的数据可用。本文旨在介绍相关的机器学习方法,重点介绍了对激光 - 血浆物理学的适用性,包括其重要的激光 - 等离子加速度和惯性限制融合。

Laser-plasma physics has developed rapidly over the past few decades as high-power lasers have become both increasingly powerful and more widely available. Early experimental and numerical research in this field was restricted to single-shot experiments with limited parameter exploration. However, recent technological improvements make it possible to gather an increasing amount of data, both in experiments and simulations. This has sparked interest in using advanced techniques from mathematics, statistics and computer science to deal with, and benefit from, big data. At the same time, sophisticated modeling techniques also provide new ways for researchers to effectively deal with situations in which still only sparse amounts of data are available. This paper aims to present an overview of relevant machine learning methods with focus on applicability to laser-plasma physics, including its important sub-fields of laser-plasma acceleration and inertial confinement fusion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源