论文标题

对部分可观察到的时空混沌系统的无模型预测

Model-Free Forecasting of Partially Observable Spatiotemporally Chaotic Systems

论文作者

Gupta, Vikrant, Li, Larry K. B., Chen, Shiyi, Wan, Minping

论文摘要

储层计算是预测湍流的强大工具,因为其简单的体系结构具有处理大型系统的计算效率。但是,它的实施通常需要对系统非线性的全面测量和知识。我们使用非线性投影仪函数将系统测量值扩展到高维空间,然后将其馈送到储层中以获得预测。我们证明了此类储层计算网络在时空混乱系统上的应用,该系统对湍流的几种特征进行了建模。我们表明,将径向基函数用作非线性投影仪,即使只有部分观察,并且不知道管理方程式,也可以将复杂的系统非线性捕获。最后,我们表明,当测量结果稀疏或不完整且嘈杂时,即使是管理方程式也不准确,我们的网络仍然可以产生合理准确的预测,从而为实用湍流系统的无模型预测铺平了道路。

Reservoir computing is a powerful tool for forecasting turbulence because its simple architecture has the computational efficiency to handle large systems. Its implementation, however, often requires full state-vector measurements and knowledge of the system nonlinearities. We use nonlinear projector functions to expand the system measurements to a high dimensional space and then feed them to a reservoir to obtain forecasts. We demonstrate the application of such reservoir computing networks on spatiotemporally chaotic systems, which model several features of turbulence. We show that using radial basis functions as nonlinear projectors enables complex system nonlinearities to be captured robustly even with only partial observations and without knowing the governing equations. Finally, we show that when measurements are sparse or incomplete and noisy, such that even the governing equations become inaccurate, our networks can still produce reasonably accurate forecasts, thus paving the way towards model-free forecasting of practical turbulent systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源