论文标题

通过限制特征信息,具有完全复杂性的解释性

Interpretability with full complexity by constraining feature information

论文作者

Murphy, Kieran A., Bassett, Dani S.

论文摘要

可解释性是机器学习的紧迫问题。可解释的机器学习的常见方法限制了输入特征之间的相互作用,从而使这些功能对模型的输出的影响可理解,但以模型复杂性为代价。我们从新角度来处理解释性:限制有关功能的信息而不限制模型的复杂性。从信息理论中借用,我们使用分布式信息瓶颈来查找最大程度地保留有关输出信息的每个功能的最佳压缩。通过功能和功能值分配学习的信息分配为解释提供了丰富的机会,尤其是在许多功能和复杂功能互动的问题中。分析的中心对象不是一个训练有素的模型,而是一系列模型,这些模型是利用有关输入信息的可变量的近似值。信息通过与输出相关的功能分配给特征,从而通过构建学习特征包含到排斥的连续体来解决特征选择问题。在近似的每个阶段,对每个功能的最佳压缩都可以对特征值之间的区分进行细粒度检查,这对预测最有影响。我们开发了一个从近似模型范围中提取见解的框架,并在一系列表格数据集上演示了其实用性。

Interpretability is a pressing issue for machine learning. Common approaches to interpretable machine learning constrain interactions between features of the input, rendering the effects of those features on a model's output comprehensible but at the expense of model complexity. We approach interpretability from a new angle: constrain the information about the features without restricting the complexity of the model. Borrowing from information theory, we use the Distributed Information Bottleneck to find optimal compressions of each feature that maximally preserve information about the output. The learned information allocation, by feature and by feature value, provides rich opportunities for interpretation, particularly in problems with many features and complex feature interactions. The central object of analysis is not a single trained model, but rather a spectrum of models serving as approximations that leverage variable amounts of information about the inputs. Information is allocated to features by their relevance to the output, thereby solving the problem of feature selection by constructing a learned continuum of feature inclusion-to-exclusion. The optimal compression of each feature -- at every stage of approximation -- allows fine-grained inspection of the distinctions among feature values that are most impactful for prediction. We develop a framework for extracting insight from the spectrum of approximate models and demonstrate its utility on a range of tabular datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源