论文标题
冻结引力波
Freezing-In Gravitational Waves
论文作者
论文摘要
早期宇宙中的热等离子体产生了随机引力波(GW)背景,该背景今天在微波处理中达到峰值,并被称为宇宙引力微波背景(CGMB)。在先前的工作中,仅考虑了对CGMB有效的单一重力生产过程。在这里,我们还研究了重力对生产过程,并表明如果最高温度与普朗克质量之间的比率,$ t _ {\ rm max}/m _ {\ rm p} $,则可以产生显着贡献。由于暗物质冻结生产机制在概念上与原始热等离子体的GW生产机制非常相似,因此我们将后者称为``GW冻结生产''。我们表明,量子重力效应出现在单个重力产生中,并且比因素$(t _ {\ rm max}/m _ {\ rm p})^2 $要小于领先顺序贡献。在我们的工作中,我们明确计算具有四分之一相互作用的标量模型中的CGMB频谱。
The thermal plasma in the early universe produced a stochastic gravitational wave (GW) background, which peaks today in the microwave regime and was dubbed the cosmic gravitational microwave background (CGMB). In previous works only single graviton production processes that contribute to the CGMB have been considered. Here we also investigate graviton pair production processes and show that these can lead to a significant contribution if the ratio between the maximum temperature and the Planck mass, $T_{\rm max}/m_{\rm p}$, divided by the internal coupling in the heat bath is large enough. As the dark matter freeze-in production mechanism is conceptually very similar to the GW production mechanism from the primordial thermal plasma, we refer to the latter as ``GW freeze-in production''. We show that quantum gravity effects appear in single graviton production and are smaller by a factor $(T_{\rm max}/m_{\rm p})^2$ than the leading order contribution. In our work we explicitly compute the CGMB spectrum within a scalar model with quartic interaction.