论文标题
将生态两分网络的结构与观察过程相关
Disentangling the structure of ecological bipartite networks from observation processes
论文作者
论文摘要
可以通过为两个类型的节点中的每一种提供聚类来描述两分相互作用网络的结构。通过将潜在块模型(LBM)拟合到观察到的网络上,该网络来自该物种相互作用的采样,从而输出了此类聚类。但是,采样有限,可能不平衡。这可能会危害LBM的拟合度,然后通过检测由采样而不是实际潜在的生态现象引起的结构来描述网络的结构。如果观察到的相互作用网络由一个加权的两部分网络组成,可以估算所有物种之间观察到的相互作用的数量,则可以估算所有物种的采样工作,并用于纠正LBM拟合。我们建议结合一个观察模型,该模型解释了采样和LBM,以描述潜在的生态相互作用的结构。我们为该模型开发了一种原始的推理程序,其效率在模拟研究中得到了证明。大型植物 - 授粉网络数据集强调了对我们模型生态学的兴趣。
The structure of a bipartite interaction network can be described by providing a clustering for each of the two types of nodes. Such clusterings are outputted by fitting a Latent Block Model (LBM) on an observed network that comes from a sampling of species interactions in the field. However, the sampling is limited and possibly uneven. This may jeopardize the fit of the LBM and then the description of the structure of the network by detecting structures which result from the sampling and not from actual underlying ecological phenomena. If the observed interaction network consists of a weighted bipartite network where the number of observed interactions between two species is available, the sampling efforts for all species can be estimated and used to correct the LBM fit. We propose to combine an observation model that accounts for sampling and an LBM for describing the structure of underlying possible ecological interactions. We develop an original inference procedure for this model, the efficiency of which is demonstrated on simulation studies. The pratical interest in ecology of our model is highlighted on a large dataset of plant-pollinator network.