论文标题
谎言小组强制学习和控制机器人系统的变异集成符网络
Lie Group Forced Variational Integrator Networks for Learning and Control of Robot Systems
论文作者
论文摘要
事实证明,将物理法律和动态系统的结构属性纳入深度学习体系结构的设计中已被证明是提高其计算效率和概括能力的强大技术。学习机器人动力学的准确模型对于安全和稳定的控制至关重要。自主移动机器人,包括轮毂,空中和水下车辆,可以建模为在基质谎言组上演变的Lagrangian或Hamiltonian刚体系统。在本文中,我们介绍了一种新的结构性深度学习体系结构,Lie Group强迫变分集成商网络(LIEFVIN)能够从位置或仅位置数据中学习控制的Lagrangian或Hamiltonian Dynamics。通过设计,Liefvins保留了动力学发展的谎言组结构,也保留了Hamiltonian或Lagrangian感兴趣的系统的结构。所提出的体系结构学习替代离散时间流图,可以在不具有数值积体器,神经模板或伴随技术的情况下进行准确,快速的预测,这是向量场所需的。此外,可以通过计算可扩展的离散时间(最佳)控制策略来利用学习的离散时间动力学。
Incorporating prior knowledge of physics laws and structural properties of dynamical systems into the design of deep learning architectures has proven to be a powerful technique for improving their computational efficiency and generalization capacity. Learning accurate models of robot dynamics is critical for safe and stable control. Autonomous mobile robots, including wheeled, aerial, and underwater vehicles, can be modeled as controlled Lagrangian or Hamiltonian rigid-body systems evolving on matrix Lie groups. In this paper, we introduce a new structure-preserving deep learning architecture, the Lie group Forced Variational Integrator Network (LieFVIN), capable of learning controlled Lagrangian or Hamiltonian dynamics on Lie groups, either from position-velocity or position-only data. By design, LieFVINs preserve both the Lie group structure on which the dynamics evolve and the symplectic structure underlying the Hamiltonian or Lagrangian systems of interest. The proposed architecture learns surrogate discrete-time flow maps allowing accurate and fast prediction without numerical-integrator, neural-ODE, or adjoint techniques, which are needed for vector fields. Furthermore, the learnt discrete-time dynamics can be utilized with computationally scalable discrete-time (optimal) control strategies.