论文标题

THZ超质量MIMO频道估计的自适应和强大的深度学习框架

An Adaptive and Robust Deep Learning Framework for THz Ultra-Massive MIMO Channel Estimation

论文作者

Yu, Wentao, Shen, Yifei, He, Hengtao, Yu, Xianghao, Song, Shenghui, Zhang, Jun, Letaief, Khaled B.

论文摘要

Terahertz超质量MIMO(THZ UM-MIMO)被设想为6G无线网络的关键推动者之一,对于该网络估计,频道估计极具挑战性。传统的分析估计方法不再有效,因为扩大的阵列孔和小波长导致远场和近场路径的混合物,构成了混合场通道。尽管具有竞争力的表现,但基于深度学习(DL)的方法通常缺乏理论保证,并且随着阵列的大小而言,尺寸较差。在本文中,我们为THZ UM-MIMO频道估计提出了一个一般的DL框架,该框架利用现有的迭代通道估计器,并具有可证明的保证。每次迭代均由固定点网络(FPN)实施,该迭代由封闭形式的线性估计器和基于DL的非线性估计器组成。由于几个独特的优势,该提出的方法与THZ UM-MIMO通道估计完美匹配。首先,复杂性很低且自适应。它具有可证明的线性收敛性,其均值成本低,并且精确度单调提高,这使自适应准确性复杂性的权衡取舍。其次,它对实用的分配变化是可靠的,并且可以直接推广到各种严重的分布场景,而几乎没有性能损失,这适合复杂的THZ通道条件。对于实际使用,提出的框架进一步扩展到具有横梁斜线效果的宽带THZ UM-MIMO系统。提供了理论分析和广泛的仿真结果,以说明估计准确性,收敛率,复杂性和鲁棒性的优势。

Terahertz ultra-massive MIMO (THz UM-MIMO) is envisioned as one of the key enablers of 6G wireless networks, for which channel estimation is highly challenging. Traditional analytical estimation methods are no longer effective, as the enlarged array aperture and the small wavelength result in a mixture of far-field and near-field paths, constituting a hybrid-field channel. Deep learning (DL)-based methods, despite the competitive performance, generally lack theoretical guarantees and scale poorly with the size of the array. In this paper, we propose a general DL framework for THz UM-MIMO channel estimation, which leverages existing iterative channel estimators and is with provable guarantees. Each iteration is implemented by a fixed point network (FPN), consisting of a closed-form linear estimator and a DL-based non-linear estimator. The proposed method perfectly matches the THz UM-MIMO channel estimation due to several unique advantages. First, the complexity is low and adaptive. It enjoys provable linear convergence with a low per-iteration cost and monotonically increasing accuracy, which enables an adaptive accuracy-complexity tradeoff. Second, it is robust to practical distribution shifts and can directly generalize to a variety of heavily out-of-distribution scenarios with almost no performance loss, which is suitable for the complicated THz channel conditions. For practical usage, the proposed framework is further extended to wideband THz UM-MIMO systems with beam squint effect. Theoretical analysis and extensive simulation results are provided to illustrate the advantages over the state-of-the-art methods in estimation accuracy, convergence rate, complexity, and robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源