论文标题

学习解毒剂数据对个人不公平

Learning Antidote Data to Individual Unfairness

论文作者

Li, Peizhao, Xia, Ethan, Liu, Hongfu

论文摘要

公平性对于部署在高级应用程序中的机器学习系统至关重要。在所有公平的概念中,个人公平性是从共识中得出的,即“应该对类似的人进行类似对待”,这是描述个人病例公平待遇的重要概念。先前的研究通常将个人公平性描述为在扰动样品上敏感属性时的预测不变问题,并通过分布强大的优化(DRO)范式解决它。但是,这种对抗性扰动沿着DRO中使用的敏感信息的方向不考虑固有的特征相关性或先天的数据约束,因此可能会误导该模型以优化在Manifold和不切实际的样本中。鉴于这一缺点,在本文中,我们建议学习和生成解毒剂数据,这些数据近似遵循数据分布以补救个人不公平。这些生成的势化解毒剂数据可以通过通用优化程序以及原始培训数据使用,从而导致纯粹的预处理方法来解决个体的不公平,也可以很好地适合于处理中的DRO范式。通过在多个表格数据集上进行的大量实验,我们证明我们的方法可以抵抗个人的不公平性,而与基线相比,预测效用的成本最低或零成本。

Fairness is essential for machine learning systems deployed in high-stake applications. Among all fairness notions, individual fairness, deriving from a consensus that `similar individuals should be treated similarly,' is a vital notion to describe fair treatment for individual cases. Previous studies typically characterize individual fairness as a prediction-invariant problem when perturbing sensitive attributes on samples, and solve it by Distributionally Robust Optimization (DRO) paradigm. However, such adversarial perturbations along a direction covering sensitive information used in DRO do not consider the inherent feature correlations or innate data constraints, therefore could mislead the model to optimize at off-manifold and unrealistic samples. In light of this drawback, in this paper, we propose to learn and generate antidote data that approximately follows the data distribution to remedy individual unfairness. These generated on-manifold antidote data can be used through a generic optimization procedure along with original training data, resulting in a pure pre-processing approach to individual unfairness, or can also fit well with the in-processing DRO paradigm. Through extensive experiments on multiple tabular datasets, we demonstrate our method resists individual unfairness at a minimal or zero cost to predictive utility compared to baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源