论文标题
SILCC VII-在高气表面密度下模拟ISM的气体运动学和多相流出
SILCC VII -- Gas kinematics and multiphase outflows of the simulated ISM at high gas surface densities
论文作者
论文摘要
我们在分层的银河系斑块中介绍了恒星形成多相星间培养基(ISM)的磁化流动力学(MHD)模拟,其气体表面密度$σ_\ Mathrm {gas} = $ 10、30、30、50和100 $ \ mathrm {m_ \ odot \ odot \ odot \ odot \ odot \ odot \ odot \ odot \,pc^{-2}}}}}}} SILCC项目仿真框架是温暖和冷ISM中非平衡热和化学过程的非平衡框架。基于水槽的恒星形成和反馈模型包括恒星风,氢气离子的紫外线辐射,核心 - 循环超新星和宇宙射线(CR)注入和扩散。模拟遵循观察到的$σ_\ mathrm {gas} $与星形速率表面密度$σ_\ mathrm {sfr} $之间的关系。 CRS定性更改流出相结构。没有CR,从两相(1 kpc温暖和热)到单相(2 kpc的热)结构的流出过渡。使用CRS,流出始终有三个阶段(冷,温暖和热),由温暖的阶段占主导地位。对于更高的$σ_\ mathrm {gas} $,CRS对质量负载的影响减少,而CR支持的外流的质量负载因子是订单统一的,独立于$σ_\ mathrm {sfr} $。与观察相似,温暖离子化培养基(WIM)和冷中性培养基(CNM)的垂直速度分散与恒星形成速率相关,为$σ_\ Mathrm {Z} \ Proptoσ_\ Mathrm {sfrm {sfr}^a $,与$ a \ sim 0.20 $。在没有恒星反馈的情况下,我们发现没有相关性。与本地观察结果一致,WIM的速度分散率是一个因子$ \ sim 2.2 $。对于$σ_\ Mathrm {sfr} \ gtrsim 1.5 \ times 10^{ - 2} \,\ mathrm {m} _ \ odot \,\ odot \,\ mathrm {yr}^{ - 1} { - 1} \,\,\,\ Mathrm {kpc}^kpc}^ - 2} $
We present magnetohydrodynamic (MHD) simulations of the star-forming multiphase interstellar medium (ISM) in stratified galactic patches with gas surface densities $Σ_\mathrm{gas} =$ 10, 30, 50, and 100 $\mathrm{M_\odot\,pc^{-2}}$. The SILCC project simulation framework accounts for non-equilibrium thermal and chemical processes in the warm and cold ISM. The sink-based star formation and feedback model includes stellar winds, hydrogen-ionising UV radiation, core-collapse supernovae, and cosmic ray (CR) injection and diffusion. The simulations follow the observed relation between $Σ_\mathrm{gas}$ and the star formation rate surface density $Σ_\mathrm{SFR}$. CRs qualitatively change the outflow phase structure. Without CRs, the outflows transition from a two-phase (warm and hot at 1 kpc) to a single-phase (hot at 2 kpc) structure. With CRs, the outflow always has three phases (cold, warm, and hot), dominated in mass by the warm phase. The impact of CRs on mass loading decreases for higher $Σ_\mathrm{gas}$ and the mass loading factors of the CR-supported outflows are of order unity independent of $Σ_\mathrm{SFR}$. Similar to observations, vertical velocity dispersions of the warm ionised medium (WIM) and the cold neutral medium (CNM) correlate with the star formation rate as $σ_\mathrm{z} \propto Σ_\mathrm{SFR}^a$, with $a \sim 0.20$. In the absence of stellar feedback, we find no correlation. The velocity dispersion of the WIM is a factor $\sim 2.2$ higher than that of the CNM, in agreement with local observations. For $Σ_\mathrm{SFR} \gtrsim 1.5 \times 10^{-2}\,\mathrm{M}_\odot\,\mathrm{yr}^{-1}\,\mathrm{kpc}^{-2}$ the WIM motions become supersonic.