论文标题

改善了Schur分区功能的均衡

An improvement on the parity of Schur's partition function

论文作者

Lu, Yiwen, Wei, Tao, Guo, Xuejun

论文摘要

我们改善了S.-C。陈的结果是Schur分区功能的均等。令$ a(n)$是$ n $的舒尔分区的数量,即$ n $的分区数量到不同的零件,一致,$ 1,2 \ mod {3} $。 S.-C。 Chen \ cite {Mr3959837}显示$ \ small \ frac {x} {(\ log {x}})^{\ frac {47} {48}}}}}} \ ll \ shrow \ shrow \ {0 \ le n \ le n \ le x:a(2n+1) \ text {是奇数} \} \ ll \ frac {x} {(\ log {x}})^{\ frac {1} {2}}}} $。在本文中,我们将Chen的结果提高到$ \ frac {x} {(\ log {x})^{\ frac {\ frac {11} {12}}}} \ ll \ sharp \ sharp \ {0 \ le n \ le n \ le n \ le x:a(2n+1)\ \ \; \ text {是奇数} \} \ ll \ frac {x} {(\ log {x})^{\ frac {1} {2}}}}}}

We improve S.-C. Chen's result on the parity of Schur's partition function. Let $A(n)$ be the number of Schur's partitions of $n$, i.e., the number of partitions of $n$ into distinct parts congruent to $1, 2 \mod{3}$. S.-C. Chen \cite{MR3959837} shows $\small \frac{x}{(\log{x})^{\frac{47}{48}}} \ll \sharp \{0\le n\le x:A(2n+1)\; \text{is odd}\}\ll \frac{x}{(\log{x})^{\frac{1}{2}}}$. In this paper, we improve Chen's result to $\frac{x}{(\log{x})^{\frac{11}{12}}} \ll \sharp \{0\le n\le x:A(2n+1)\; \text{is odd}\}\ll \frac{x}{(\log{x})^{\frac{1}{2}}}.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源