论文标题
部分可观测时空混沌系统的无模型预测
Light-cone limits of large rectangular fishnets
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Basso-Dixon integrals evaluate rectangular fishnets -- Feynman graphs with massless scalar propagators which form a $m\times n$ rectangular grid -- which arise in certain one-trace four-point correlators in the `fishnet' limit of $\mathcal{N}=4$ SYM. Recently, Basso {\it et al} explored the thermodynamical limit $m\to\infty$ with fixed aspect ratio $n/m$ of a rectangular fishnet and showed that in general the dependence on the coordinates of the four operators is erased, but it reappears in a scaling limit with two of the operators getting close in a controlled way. In this note I investigate the most general double scaling limit which describes the thermodynamics when one of two pairs of operators become nearly light-like. In this double scaling limit, the rectangular fishnet depends on both coordinate cross ratios. I show that all singular limits of the fishnet can be attained within the double scaling limit, including the null limit with the four points approaching the cusps of a null square. A direct evaluation of the fishnet in the null limit is presented any $m$ and $n$.