论文标题

部分可观测时空混沌系统的无模型预测

Optimal control related to weak solutions of a chemotaxis-consumption model

论文作者

Guillén-González, Francisco, Filho, André Luiz Corrêa Vianna

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In the present work we investigate an optimal control problem related to the following chemotaxis-consumption model in a bounded domain $Ω\subset \mathbb{R}^3$: $$\partial_t u - Δu = - \nabla \cdot (u \nabla v), \quad \partial_t v - Δv = - u^s v + f \,v\, 1_{Ω_c},$$ with $s \geq 1$, endowed with isolated boundary conditions and initial conditions for $(u,v)$, being $u$ the cell density, $v$ the chemical concentration and $f$ the control acting in the $v$-equation through the bilinear term $f \,v\, 1_{Ω_c}$, in a subdomain $Ω_c \subset Ω$. We address the existence of optimal control restricted to a weak solution setting, where, in particular, uniqueness of state $(u,v)$ given a control $f$ is not clear. Then by considering weak solutions satisfying an adequate energy inequality, we prove the existence of optimal control subject to uniformly bounded controls. Finally, we discuss the relation between the considered control problem and two other related ones, where the existence of optimal solution can not be proved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源