论文标题
PICO空间任务的原始引力波的前景分离和约束
Foreground Separation and Constraints on Primordial Gravitational Waves with the PICO Space Mission
论文作者
论文摘要
PICO是NASA探针尺度任务的一个概念,旨在检测或限制张量与标量比$ r $,该参数量化了通货膨胀重力波的幅度。我们在具有五个前景模型的模拟上进行基于地图的组件分离,并输入$ r $ $ r_ {in} = 0 $和$ r_ {in} = 0.003 $。我们使用高斯可能性预测$ r $的确定,假设没有删除或残留的镜头因子$ a _ {\ rm镜头} $ = 27%。通过实施第一个全套的,后的组件分离,地图域删除,我们表明PICO应该能够实现$ a _ {\ rm Lens} $ = 22% - 24%。对于五个前景模型中的四个,我们发现PICO将能够设置约束$ r <1.3 \ times 10^{ - 4} \,\,\,\,\ mbox {to} \,\,\,r <2.7 \ times 10^{ - 4} { - 4} \,(95 \%),(95 \%\%)$ r_ in} = 0 $ r_ {对于这些型号,$ r = 0.003 $以置信度水平在$18σ$和27σ$之间回收。我们发现较低的低频或高频带时,我们发现上限较弱,并且在某些情况下会显着偏见。当$ r_ {in} = 0 $和$ r_ {in} = 0.003 $的$3σ$偏见时,第五款给出了$3σ$检测。但是,通过将许多小2.5%的天空区域的$ r $确定与任务的555 GHz数据相关联,我们可以识别并减轻偏见。该分析强调了大天空覆盖的重要性。我们表明,当仅使用低多物$ \ ell \ leq 12 $时,真实可能性的非高斯形状的不确定性平均比高斯近似值大30%。
PICO is a concept for a NASA probe-scale mission aiming to detect or constrain the tensor to scalar ratio $r$, a parameter that quantifies the amplitude of inflationary gravity waves. We carry out map-based component separation on simulations with five foreground models and input $r$ values $r_{in}=0$ and $r_{in} = 0.003$. We forecast $r$ determinations using a Gaussian likelihood assuming either no delensing or a residual lensing factor $A_{\rm lens}$ = 27%. By implementing the first full-sky, post component-separation, map-domain delensing, we show that PICO should be able to achieve $A_{\rm lens}$ = 22% - 24%. For four of the five foreground models we find that PICO would be able to set the constraints $r < 1.3 \times 10^{-4} \,\, \mbox{to} \,\, r <2.7 \times 10^{-4}\, (95\%)$ if $r_{in}=0$, the strongest constraints of any foreseeable instrument. For these models, $r=0.003$ is recovered with confidence levels between $18σ$ and $27σ$. We find weaker, and in some cases significantly biased, upper limits when removing few low or high frequency bands. The fifth model gives a $3σ$ detection when $r_{in}=0$ and a $3σ$ bias with $r_{in} = 0.003$. However, by correlating $r$ determinations from many small 2.5% sky areas with the mission's 555 GHz data we identify and mitigate the bias. This analysis underscores the importance of large sky coverage. We show that when only low multipoles $\ell \leq 12$ are used, the non-Gaussian shape of the true likelihood gives uncertainties that are on average 30% larger than a Gaussian approximation.