论文标题

Gread:图形神经反应扩散网络

GREAD: Graph Neural Reaction-Diffusion Networks

论文作者

Choi, Jeongwhan, Hong, Seoyoung, Park, Noseong, Cho, Sung-Bae

论文摘要

图神经网络(GNN)是最受欢迎的深度学习研究主题之一。 GNN方法通常是在图形信号处理理论之上设计的。特别是,扩散方程已被广泛用于设计GNN的核心处理层,因此它们不可避免地容易受到臭名昭著的超平滑尺寸问题的影响。最近,几篇论文关注与扩散方程相结合的反应方程。但是,他们都考虑了有限的反应方程式。为此,我们提出了一种基于反应扩散方程的GNN方法,该方法除了我们设计的一个特殊反应方程外,还考虑了所有流行的反应方程。据我们所知,我们的论文是基于反应扩散方程的GNN的最全面研究之一。在我们使用9个数据集和28个基线的实验中,我们的方法(称为Gread)在大多数情况下都超过了它们。进一步的合成数据实验表明,它可以减轻过度厚度的问题,并且可以很好地适合各种同质速率。

Graph neural networks (GNNs) are one of the most popular research topics for deep learning. GNN methods typically have been designed on top of the graph signal processing theory. In particular, diffusion equations have been widely used for designing the core processing layer of GNNs, and therefore they are inevitably vulnerable to the notorious oversmoothing problem. Recently, a couple of papers paid attention to reaction equations in conjunctions with diffusion equations. However, they all consider limited forms of reaction equations. To this end, we present a reaction-diffusion equation-based GNN method that considers all popular types of reaction equations in addition to one special reaction equation designed by us. To our knowledge, our paper is one of the most comprehensive studies on reaction-diffusion equation-based GNNs. In our experiments with 9 datasets and 28 baselines, our method, called GREAD, outperforms them in a majority of cases. Further synthetic data experiments show that it mitigates the oversmoothing problem and works well for various homophily rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源