论文标题

一个基于合奏的深框架,用于估算来自火焰产生的歧管的热化学状态变量

An Ensemble-Based Deep Framework for Estimating Thermo-Chemical State Variables from Flamelet Generated Manifolds

论文作者

Salunkhe, Amol, Georgalis, Georgios, Patra, Abani, Chandola, Varun

论文摘要

湍流燃烧流的完整计算涉及两个单独的步骤:将反应动力学映射到低维歧管,并在CFD运行时查找此大约歧管,以估计热化学状态变量。在我们以前的工作中,我们表明,与基准分析相比,使用深层体系结构共同学习两个步骤,而不是单独学习,在估算源能量(一个关键状态变量)方面,使用了73%的准确性,并且可以集成在DNS湍流燃烧框架中。在其自然形式中,这种深层体系结构不允许对感兴趣量的不确定性量化:源能量和关键物种源术语。在本文中,我们通过引入深层集合以近似关注量的后验分布来扩展此类架构,特别是ChemTAB。我们研究了创建这些集成模型的两种策略:一种保留Flamelet Origin信息(Flamelets策略)的策略,而一种忽略了起源并独立考虑所有数据的策略(点策略)。为了训练这些模型,我们使用了由Gri-Mech 3.0甲烷机制产生的火焰数据,该数据由53种化学物种和325种反应组成。我们的结果表明,在感兴趣量的绝对预测误差方面,火焰策略是优越的,但依赖于用于训练合奏的火焰类型。这些点策略最好捕获与火焰类型无关的关注量的变异性。我们得出的结论是,与没有这些修改的模型相比,与模型相比,ChemTab深层集合可以更准确地表示源能量和关键物种源项。

Complete computation of turbulent combustion flow involves two separate steps: mapping reaction kinetics to low-dimensional manifolds and looking-up this approximate manifold during CFD run-time to estimate the thermo-chemical state variables. In our previous work, we showed that using a deep architecture to learn the two steps jointly, instead of separately, is 73% more accurate at estimating the source energy, a key state variable, compared to benchmarks and can be integrated within a DNS turbulent combustion framework. In their natural form, such deep architectures do not allow for uncertainty quantification of the quantities of interest: the source energy and key species source terms. In this paper, we expand on such architectures, specifically ChemTab, by introducing deep ensembles to approximate the posterior distribution of the quantities of interest. We investigate two strategies of creating these ensemble models: one that keeps the flamelet origin information (Flamelets strategy) and one that ignores the origin and considers all the data independently (Points strategy). To train these models we used flamelet data generated by the GRI--Mech 3.0 methane mechanism, which consists of 53 chemical species and 325 reactions. Our results demonstrate that the Flamelets strategy is superior in terms of the absolute prediction error for the quantities of interest, but is reliant on the types of flamelets used to train the ensemble. The Points strategy is best at capturing the variability of the quantities of interest, independent of the flamelet types. We conclude that, overall, ChemTab Deep Ensembles allows for a more accurate representation of the source energy and key species source terms, compared to the model without these modifications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源