论文标题
部分可观测时空混沌系统的无模型预测
Sparse Bayesian mass-mapping using trans-dimensional MCMC
论文作者
论文摘要
不确定性定量是宇宙学质量映射的关键步骤,通常被忽略。建议的方法通常仅是近似或对剪切场的高斯性假设。概率采样方法,例如马尔可夫链蒙特卡洛(MCMC),绘制样品形成了概率分布,可以进行完全和灵活的不确定性定量,但是这些方法众所周知,在成像问题的高维参数空间中,这些方法却很慢。在这项工作中,我们首次使用跨维MCMC采样器用于质量映射,以小波促进稀疏性。该采样器逐渐按照数据的要求逐渐生长参数空间,从而利用了小波空间中质量图的极稀疏性质。小波系数以树状结构排列,随着参数空间的增长,它增加了更细节的细节。我们在星系集群尺度图像上演示了平面建模近似有效的星系群尺度图像。在高分辨率实验中,该方法会产生自然的简约溶液,需要少于潜在的最大小波系数数量的1%,并且仍然对观察到的数据产生良好的拟合。在存在噪声数据的情况下,跨维MCMC比标准平滑的kaiser-squires方法产生更好的质量图的重建,并加上不确定性得到充分量化。这打开了新的质量图和对暗物质性质的推论的可能性,并使用即将进行的弱透镜调查(例如欧几里得)的新高分辨率数据。
Uncertainty quantification is a crucial step of cosmological mass-mapping that is often ignored. Suggested methods are typically only approximate or make strong assumptions of Gaussianity of the shear field. Probabilistic sampling methods, such as Markov chain Monte Carlo (MCMC), draw samples form a probability distribution, allowing for full and flexible uncertainty quantification, however these methods are notoriously slow and struggle in the high-dimensional parameter spaces of imaging problems. In this work we use, for the first time, a trans-dimensional MCMC sampler for mass-mapping, promoting sparsity in a wavelet basis. This sampler gradually grows the parameter space as required by the data, exploiting the extremely sparse nature of mass maps in wavelet space. The wavelet coefficients are arranged in a tree-like structure, which adds finer scale detail as the parameter space grows. We demonstrate the trans-dimensional sampler on galaxy cluster-scale images where the planar modelling approximation is valid. In high-resolution experiments, this method produces naturally parsimonious solutions, requiring less than 1% of the potential maximum number of wavelet coefficients and still producing a good fit to the observed data. In the presence of noisy data, trans-dimensional MCMC produces a better reconstruction of mass-maps than the standard smoothed Kaiser-Squires method, with the addition that uncertainties are fully quantified. This opens up the possibility for new mass maps and inferences about the nature of dark matter using the new high-resolution data from upcoming weak lensing surveys such as Euclid.