论文标题

MaskPlace:通过增强视觉表示学习的快速芯片放置

MaskPlace: Fast Chip Placement via Reinforced Visual Representation Learning

论文作者

Lai, Yao, Mu, Yao, Luo, Ping

论文摘要

放置是现代芯片设计中的重要任务,旨在将数百万电路模块放在2D芯片帆布上。与以人为中心的解决方案不同,该解决方案需要硬件工程师几个月的努力来生产一个布局来最大程度地减少延迟和能耗,因此深度强化学习已成为一种新兴的自主工具。但是,以学习为中心的方法仍处于早期阶段,受到数千个尺寸的巨大设计空间的阻碍。这项工作为Maskplace展示了几个小时内自动生成有效的芯片布局设计,其性能可以优越或与最近的高级方法相当。它具有以前艺术所没有的几种吸引人的好处。首先,蒙版将放置作为学习像素级视觉表示的问题,以全面描述芯片上的数百万个模块,从而在高分辨率的画布和大型动作空间中放置。它的表现优于将芯片表示为超图的最新方法。其次,它可以通过具有密集的奖励的直观奖励功能来培训政策网络,而不是以前方法稀疏的奖励,而不是复杂的奖励功能。第三,许多公共基准的广泛实验表明,蒙版在所有关键性能指标中的现有RL方法都超过现有的RL方法,包括电线长度,拥塞和密度。例如,它可实现60%-90%的线长度减少并确保零重叠。我们认为,面具可以改善AI辅助芯片布局设计。可交付成果在https://laiyao1.github.io/maskplace上发布。

Placement is an essential task in modern chip design, aiming at placing millions of circuit modules on a 2D chip canvas. Unlike the human-centric solution, which requires months of intense effort by hardware engineers to produce a layout to minimize delay and energy consumption, deep reinforcement learning has become an emerging autonomous tool. However, the learning-centric method is still in its early stage, impeded by a massive design space of size ten to the order of a few thousand. This work presents MaskPlace to automatically generate a valid chip layout design within a few hours, whose performance can be superior or comparable to recent advanced approaches. It has several appealing benefits that prior arts do not have. Firstly, MaskPlace recasts placement as a problem of learning pixel-level visual representation to comprehensively describe millions of modules on a chip, enabling placement in a high-resolution canvas and a large action space. It outperforms recent methods that represent a chip as a hypergraph. Secondly, it enables training the policy network by an intuitive reward function with dense reward, rather than a complicated reward function with sparse reward from previous methods. Thirdly, extensive experiments on many public benchmarks show that MaskPlace outperforms existing RL approaches in all key performance metrics, including wirelength, congestion, and density. For example, it achieves 60%-90% wirelength reduction and guarantees zero overlaps. We believe MaskPlace can improve AI-assisted chip layout design. The deliverables are released at https://laiyao1.github.io/maskplace.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源