论文标题
有效的基于频域的变压器,用于高质量图像脱毛
Efficient Frequency Domain-based Transformers for High-Quality Image Deblurring
论文作者
论文摘要
我们提出了一种有效而有效的方法,该方法探讨了频域中变形金刚在高质量图像中的特性。我们的方法是由卷积定理激发的,即空间域中两个信号的相关性或卷积等于频域中其元素的元素。这激发了我们开发有效的基于频域的自我发项求解器(FSA),以估算元素的产品操作,而不是空间域中的矩阵乘法。此外,我们注意到,仅在变压器中使用幼稚的进发纸网络(FFN)不会产生良好的脱张结果。为了克服这个问题,我们提出了一个简单但有效的基于频域的FFN(DFFN),在该问题中,我们基于联合摄影专家组(JPEG)压缩算法在FFN中介绍一个门控机制,以歧视以确定应保留特征的低和高频信息以保留该特征的低频率信息,以供潜伏的清晰图像恢复。我们根据编码器和解码器体系结构将提出的FSA和DFFN制定到非对称网络中,其中FSA仅在解码器模块中用于更好的图像脱布。实验结果表明,所提出的方法对最先进的方法有利。代码将在\ url {https://github.com/kkkls/fftformer}上找到。
We present an effective and efficient method that explores the properties of Transformers in the frequency domain for high-quality image deblurring. Our method is motivated by the convolution theorem that the correlation or convolution of two signals in the spatial domain is equivalent to an element-wise product of them in the frequency domain. This inspires us to develop an efficient frequency domain-based self-attention solver (FSAS) to estimate the scaled dot-product attention by an element-wise product operation instead of the matrix multiplication in the spatial domain. In addition, we note that simply using the naive feed-forward network (FFN) in Transformers does not generate good deblurred results. To overcome this problem, we propose a simple yet effective discriminative frequency domain-based FFN (DFFN), where we introduce a gated mechanism in the FFN based on the Joint Photographic Experts Group (JPEG) compression algorithm to discriminatively determine which low- and high-frequency information of the features should be preserved for latent clear image restoration. We formulate the proposed FSAS and DFFN into an asymmetrical network based on an encoder and decoder architecture, where the FSAS is only used in the decoder module for better image deblurring. Experimental results show that the proposed method performs favorably against the state-of-the-art approaches. Code will be available at \url{https://github.com/kkkls/FFTformer}.