论文标题

无监督视频对象细分的双重原型关注

Dual Prototype Attention for Unsupervised Video Object Segmentation

论文作者

Cho, Suhwan, Lee, Minhyeok, Lee, Seunghoon, Lee, Dogyoon, Choi, Heeseung, Kim, Ig-Jae, Lee, Sangyoun

论文摘要

无监督的视频对象细分(VOS)旨在检测和细分视频中最显着的对象。无监督VO中使用的主要技术是1)外观和运动信息的协作; 2)不同帧之间的时间融合。本文提出了两种新型基于原型的注意机制,即模式间注意力(IMA)和框架间注意(IFA),以通过跨不同模态和帧的密集传播结合这些技术。 iMa密集地基于相互的完善将不同模式的上下文信息整合在一起。 IFA将视频的全局上下文注入查询框架,从而可以从多个帧中充分利用有用的属性。公共基准数据集的实验结果表明,我们所提出的方法的表现优于所有现有方法。提出的两个组成部分也通过消融研究彻底验证。

Unsupervised video object segmentation (VOS) aims to detect and segment the most salient object in videos. The primary techniques used in unsupervised VOS are 1) the collaboration of appearance and motion information; and 2) temporal fusion between different frames. This paper proposes two novel prototype-based attention mechanisms, inter-modality attention (IMA) and inter-frame attention (IFA), to incorporate these techniques via dense propagation across different modalities and frames. IMA densely integrates context information from different modalities based on a mutual refinement. IFA injects global context of a video to the query frame, enabling a full utilization of useful properties from multiple frames. Experimental results on public benchmark datasets demonstrate that our proposed approach outperforms all existing methods by a substantial margin. The proposed two components are also thoroughly validated via ablative study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源