论文标题

一种增强学习方法,以优化可用的网络带宽利用率

A Reinforcement Learning Approach to Optimize Available Network Bandwidth Utilization

论文作者

Jamil, Hasibul, Rodrigues, Elvis, Goldverg, Jacob, Kosar, Tevfik

论文摘要

高速,长距离共享网络上有效的数据传输需要正确利用可用网络带宽。使用并行的TCP流允许应用程序来利用网络并行性并可以改善传输吞吐量;但是,由于非确定的背景流量共享同一网络,因此找到最佳的平行TCP流数量是具有挑战性的。此外,主机系统中网络信号的非平稳,多目标和部分观察的性质为查找当前网络条件增加了额外的复杂性。在这项工作中,我们提出了一种新颖的方法,可以使用深钢筋学习(RL)找到最佳的平行TCP流数量。我们设计了一种基于学习的算法,该算法能够概括不同的网络条件并智能地利用可用的网络带宽。与基于规则的启发式方法相反,在未知网络方案中无法很好地概括,我们的基于RL的解决方案可以动态发现和调整并行的TCP流数量,以最大程度地利用网络带宽利用率而无需交通网络并确保在争夺转移之间公平。我们对基于RL的算法的性能进行了广泛评估,并将其与几种最先进的在线优化算法进行了比较。结果表明,我们的基于RL的算法可以找到近40%的近距离解决方案,同时达到高达15%的吞吐量。我们还表明,与贪婪的算法不同,我们设计的基于RL的算法可以避免网络拥塞,并在竞争转移中公平地共享可用的网络资源。

Efficient data transfers over high-speed, long-distance shared networks require proper utilization of available network bandwidth. Using parallel TCP streams enables an application to utilize network parallelism and can improve transfer throughput; however, finding the optimum number of parallel TCP streams is challenging due to nondeterministic background traffic sharing the same network. Additionally, the non-stationary, multi-objectiveness, and partially-observable nature of network signals in the host systems add extra complexity in finding the current network condition. In this work, we present a novel approach to finding the optimum number of parallel TCP streams using deep reinforcement learning (RL). We devise a learning-based algorithm capable of generalizing different network conditions and utilizing the available network bandwidth intelligently. Contrary to rule-based heuristics that do not generalize well in unknown network scenarios, our RL-based solution can dynamically discover and adapt the parallel TCP stream numbers to maximize the network bandwidth utilization without congesting the network and ensure fairness among contending transfers. We extensively evaluated our RL-based algorithm's performance, comparing it with several state-of-the-art online optimization algorithms. The results show that our RL-based algorithm can find near-optimal solutions 40% faster while achieving up to 15% higher throughput. We also show that, unlike a greedy algorithm, our devised RL-based algorithm can avoid network congestion and fairly share the available network resources among contending transfers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源