论文标题

对通用连续函数的受限的厄贡优化

Constrained Ergodic optimization for generic continuous functions

论文作者

Motonaga, Shoya, Shinoda, Mao

论文摘要

Ergodic优化的基本结果之一断言,对于具有规格属性的紧凑型公制空间上的任何动态系统,对于通用连续函数$ f $,每个不变概率度量$ f $ $ f $,最大化$ f $的空间平均值必须具有零熵。我们在限制性的千古优化的背景下建立了类似的结果,这是由Garibaldi和Lopes(2007)引入的。

One of the fundamental results of ergodic optimization asserts that for any dynamical system on a compact metric space with the specification property and for a generic continuous function $f$ every invariant probability measure that maximizes the space average of $f$ must have zero entropy. We establish the analogical result in the context of constraint ergodic optimization, which is introduced by Garibaldi and Lopes (2007).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源