论文标题
S2XR中的旋转椭圆形温达尔滕表面和HOPF问题
Rotational Elliptic Weingarten surfaces in S2xR and the Hopf problem
论文作者
论文摘要
我们证明,S2XR中的任何均匀的椭圆形的Weingarten(拓扑)球都必须与与Weingarten方程相关的规范示例一致。通过证明S2XR中的旋转椭圆形的Weingarten表面与J. A. A.Gálvez和P. Mira一起产生的HOPF类型,从而获得了结果。
We prove that any uniformly elliptic Weingarten (topological) sphere in S2xR must be congruent to the canonical example associated to the Weingarten equation. The result is obtained by proving that rotational uniformly elliptic Weingarten surfaces in S2xR have bounded second fundamental form together with a Hopf type result by J. A. Gálvez and P. Mira.