论文标题
CEGPY:使用Python中的链事件图进行建模
cegpy: Modelling with Chain Event Graphs in Python
论文作者
论文摘要
连锁事件图(CEGS)是近期概率图形模型的家族,概括了流行的贝叶斯网络(BNS)家族。至关重要的是,与BN不同,CEG能够嵌入其图及其统计模型中,该过程通过过程表现出不对称性。这些不对称可能位于条件独立关系中,也可能在图形的结构及其基础事件空间中。结构性不对称在许多领域都很常见,并且可以自然发生(例如,被告与检察官的事件版本)或设计(例如,公共卫生干预措施)。但是,目前尚无软件可以允许用户利用CEG模型家族的理论发展,以建模结构不对称的过程。本文介绍了Cegpy,这是第一个用于学习和分析CEGS复杂过程的Python软件包。 CEGPY的关键功能是,它是任何编程语言中的第一个CEG软件包,可以用对称和不对称结构对过程进行建模。 CEGPY包含贝叶斯模型选择和CEGS概率传播算法的实现。我们使用结构不对称数据集说明了CEGPY的功能。
Chain event graphs (CEGs) are a recent family of probabilistic graphical models that generalise the popular Bayesian networks (BNs) family. Crucially, unlike BNs, a CEG is able to embed, within its graph and its statistical model, asymmetries exhibited by a process. These asymmetries might be in the conditional independence relationships or in the structure of the graph and its underlying event space. Structural asymmetries are common in many domains, and can occur naturally (e.g. a defendant vs prosecutor's version of events) or by design (e.g. a public health intervention). However, there currently exists no software that allows a user to leverage the theoretical developments of the CEG model family in modelling processes with structural asymmetries. This paper introduces cegpy, the first Python package for learning and analysing complex processes using CEGs. The key feature of cegpy is that it is the first CEG package in any programming language that can model processes with symmetric as well as asymmetric structures. cegpy contains an implementation of Bayesian model selection and probability propagation algorithms for CEGs. We illustrate the functionality of cegpy using a structurally asymmetric dataset.