论文标题

F2SD:端到端组检测算法的数据集

F2SD: A dataset for end-to-end group detection algorithms

论文作者

Hoang, Giang, Dinh, Tuan Nguyen, Hoang, Tung Cao, Duy, Son Le, Hihara, Keisuke, Utada, Yumeka, Torii, Akihiko, Izumi, Naoki, Quoc, Long Tran

论文摘要

缺乏大规模数据集阻碍了深度学习方法解决F型检测问题的进步。此外,大多数有关此问题的研究都依赖于对象位置和方向的输入传感器信号,而不是图像信号。为了解决这个问题,我们开发了一个新的大型模拟图像数据集,以用于F构型检测,称为F型模拟数据集(F2SD)。 F2SD包含从GTA-5模拟的近60,000张图像,并在图像上包含边界框和方向信息,使其可用于多种建模​​方法。它也更接近实际情况,其中三维位置和定向信息的记录成本很高。在保持现实的同时构建这样的大规模模拟数据集是一项挑战。此外,可用的研究利用常规方法来检测组。他们不会直接从图像中检测组。在这项工作中,我们提出了(1)大规模仿真数据集F2SD和F-Formation Migulation的管道,(2)任务的第一个端到端基线模型以及我们的仿真数据集中的实验。

The lack of large-scale datasets has been impeding the advance of deep learning approaches to the problem of F-formation detection. Moreover, most research works on this problem rely on input sensor signals of object location and orientation rather than image signals. To address this, we develop a new, large-scale dataset of simulated images for F-formation detection, called F-formation Simulation Dataset (F2SD). F2SD contains nearly 60,000 images simulated from GTA-5, with bounding boxes and orientation information on images, making it useful for a wide variety of modelling approaches. It is also closer to practical scenarios, where three-dimensional location and orientation information are costly to record. It is challenging to construct such a large-scale simulated dataset while keeping it realistic. Furthermore, the available research utilizes conventional methods to detect groups. They do not detect groups directly from the image. In this work, we propose (1) a large-scale simulation dataset F2SD and a pipeline for F-formation simulation, (2) a first-ever end-to-end baseline model for the task, and experiments on our simulation dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源