论文标题

化学和生化反应网络奇异扰动的自然参数条件

Natural parameter conditions for singular perturbations of chemical and biochemical reaction networks

论文作者

Eilertsen, Justin, Schnell, Santiago, Walcher, Sebastian

论文摘要

我们认为反应网络在某个参数范围内承认降低了奇异的扰动。本文的重点是推导“小参数”(简短地用于小型扰动参数),以以一致的方式来衡量还原的准确性,可容纳计算,并允许用化学或生物化学术语进行解释。我们的工作是基于局部时间尺度估计,该估计值是雅各比族附近的特征值的真实部分的比率。这种方法修改了Segel和Slemrod引入的方法,并从计算奇异扰动理论中熟悉。尽管该方法得出的参数无法为降低的准确性提供通用的定量估计值,但它们代表了迈向这一目标的关键第一步。直接与特征值合作通常是不可行的,而且充其量是笨拙的。因此,我们专注于特征多项式的系数以得出参数,并将其与时间标度相关联。因此,我们获得了任意维度系统的区分参数,特别是将降低至维度。作为第一个应用程序,我们在各种环境中讨论了Michaelis-Michaelis-Menten反应机制系统,并以新的甚至令人惊讶的结果。我们开始研究第三维的更复杂的酶催化反应机制(非竞争性,竞争性抑制和合作性),并将尺寸降低至第一和第二。我们为这些三维系统得出的杰出参数是新的。实际上,到目前为止,文献中似乎没有对小参数的严格推导。包括数值模拟以说明获得参数的功效,但也表明必须观察到某些局限性。

We consider reaction networks that admit a singular perturbation reduction in a certain parameter range. The focus of this paper is on deriving "small parameters" (briefly for small perturbation parameters), to gauge the accuracy of the reduction, in a manner that is consistent, amenable to computation and permits an interpretation in chemical or biochemical terms. Our work is based on local timescale estimates via ratios of the real parts of eigenvalues of the Jacobian near critical manifolds. This approach modifies the one introduced by Segel and Slemrod and is familiar from computational singular perturbation theory. While parameters derived by this method cannot provide universal quantitative estimates for the accuracy of a reduction, they represent a critical first step toward this end. Working directly with eigenvalues is generally unfeasible, and at best cumbersome. Therefore we focus on the coefficients of the characteristic polynomial to derive parameters, and relate them to timescales. Thus, we obtain distinguished parameters for systems of arbitrary dimension, with particular emphasis on reduction to dimension one. As a first application, we discuss the Michaelis--Menten reaction mechanism system in various settings, with new and perhaps surprising results. We proceed to investigate more complex enzyme catalyzed reaction mechanisms (uncompetitive, competitive inhibition and cooperativity) of dimension three, with reductions to dimension one and two. The distinguished parameters we derive for these three-dimensional systems are new. In fact, no rigorous derivation of small parameters seems to exist in the literature so far. Numerical simulations are included to illustrate the efficacy of the parameters obtained, but also to show that certain limitations must be observed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源