论文标题
在适当的功能上
On Proper Colorings of Functions
论文作者
论文摘要
我们研究了Greenwell和Lovász的$ K $ - 交换问题的无限版本。 给定无限的红衣主教$κ$和$λ$,对于函数$ x,y \ in {}^λκ$,我们说,如果$ x(i)\ ne y(i)$(i)$ i \ inλ$完全不同。如果$ f(x)\ ne f(y)$,a函数$ f:{}^λκ\longrightArrowκ$是适当的着色,则只要$ x $和$ y $都是$ {}^λκ$的完全不同的元素。 我们说$ f $是弱统一的,如果有成对的完全不同的函数$ \ {r_α:α<κ\} \ subset {}^λκ$,使得$ f(r_α)=α$; $ f $如果没有适当的颜色$ g:{}^λκ\longrightArrowκ$,因此{}^λκ$ in {}^λκ$ a $ g(x)\ ne f(x)$恰好有一个$ x \。 我们表明,给定适当的颜色$ f:{}^λκ\至κ$,以下陈述是等效的$ f $是弱均匀的,有一个$κ^{+} $ - 完整的Ultrafiter $ \ Mathscr {U} $λ$,并且在Symmmmmmmmmmmmmmmmmmm(κ(κ)上, $ f(x)=π(α)\ \ longleftrightArrow \ \ {i \inλ:x(i)=α\} \ in \ mathscr {u} 我们还表明,有一些紧密的颜色无法获得这种方式。
We investigate the infinite version of the $k$-switch problem of Greenwell and Lovász. Given infinite cardinals $κ$ and $λ$, for functions $x,y\in {}^λκ$ we say that they are totally different if $x(i)\ne y(i)$ for each $i\in λ$. A function $F:{}^λκ\longrightarrow κ $ is a proper coloring if $F(x)\ne F(y)$ whenever $x$ and $y$ are totally different elements of ${}^λκ $. We say that $F$ is weakly uniform iff there are pairwise totally different functions $\{r_α:α<κ\}\subset {}^λκ$ such that $F(r_α)=α$; $F$ is tight if there is no proper coloring $G:{}^λκ\longrightarrow κ$ such that there is exactly one $x\in {}^λκ$ with $G(x)\ne F(x)$. We show that given a proper coloring $F:{}^λκ\to κ$, the following statements are equivalent $F$ is weakly uniform, there is a $κ ^{+}$-complete ultrafilter $\mathscr{U}$ on $λ$ and there is a permutation $π\in Symm(κ)$ such that for each $x\in {}^λκ$ we have $$F(x)=π(α)\ \Longleftrightarrow \ \{i\in λ: x(i)=α\} \in \mathscr{U}.$$ We also show that there are tight proper colorings which cannot be obtained such a way.