论文标题

用于机器人移动操作的贝叶斯多任务学习MPC

Bayesian Multi-Task Learning MPC for Robotic Mobile Manipulation

论文作者

Arcari, Elena, Minniti, Maria Vittoria, Scampicchio, Anna, Carron, Andrea, Farshidian, Farbod, Hutter, Marco, Zeilinger, Melanie N.

论文摘要

由于需要解决许多不同的任务,例如打开门或挑选对象,因此机器人技术中的移动操作是具有挑战性的。通常,可以使用基本的第一原理系统描述,从而激发了基于模型的控制器的使用。但是,机器人动力学及其与对象的相互作用受到不确定性的影响,从而限制了控制器的性能。为了解决这个问题,我们提出了一个贝叶斯多任务学习模型,该模型使用三角基函数来识别动力学中的误差。这样,可以利用来自不同但相关任务的数据提供描述性错误模型,该模型可以有效地在线更新,以获取新的,看不见的任务。我们将该学习方案与模型预测控制器相结合,并广泛测试所提出方法的有效性,包括与可用基线控制器的比较。我们使用平衡机器人进行了模拟测试,并使用四足动物进行开门的硬件实验。

Mobile manipulation in robotics is challenging due to the need of solving many diverse tasks, such as opening a door or picking-and-placing an object. Typically, a basic first-principles system description of the robot is available, thus motivating the use of model-based controllers. However, the robot dynamics and its interaction with an object are affected by uncertainty, limiting the controller's performance. To tackle this problem, we propose a Bayesian multi-task learning model that uses trigonometric basis functions to identify the error in the dynamics. In this way, data from different but related tasks can be leveraged to provide a descriptive error model that can be efficiently updated online for new, unseen tasks. We combine this learning scheme with a model predictive controller, and extensively test the effectiveness of the proposed approach, including comparisons with available baseline controllers. We present simulation tests with a ball-balancing robot, and door-opening hardware experiments with a quadrupedal manipulator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源