论文标题

极端量子限制中的分数量子霍尔谷铁磁性

Fractional quantum Hall valley ferromagnetism in the extreme quantum limit

论文作者

Hossain, Md. Shafayat, Ma, M. K., Chung, Y. J., Singh, S. K., Gupta, A., Pfeiffer, L. N., West, K. W., Baldwin, K. W., Winkler, R., Shayegan, M.

论文摘要

电子的多种量子自由度可以导致丰富的物理学,包括各种外来基础状态之间的竞争,以及诸如Spintronics和Valleytronics等新型应用。在这里,我们报告了磁铁传输实验,证明了山谷的自由度如何影响分数量子状态(FQHSS)以及相关的磁性磁通 - 电子复合材料(CFS),仅当仅占用最低的Landau水平时,在极高的量子限制中,在非常高的磁场处于极高的磁场。与其他二维电子系统(如SI或单层石墨烯和过渡金属二核化)不同,在我们的alas样品中,我们可以通过施加原位菌株来连续调整山谷极化。我们发现,即使FQHS进行了山谷两极化的过渡,它们仍然表现出异常强大,从而揭示了FQHSS和基础CFS的令人惊讶的强大的铁磁磁性。我们的观察表明,CFS在我们的系统中强烈相互作用。当我们监视具有不同山谷极化的FHQS的过渡时,我们还能够在极端量子极限中获得FQHS和CF谷极化的相图。

Electrons' multiple quantum degrees of freedom can lead to rich physics, including a competition between various exotic ground states, as well as novel applications such as spintronics and valleytronics. Here we report magneto-transport experiments demonstrating how the valley degree of freedom impacts the fractional quantum states (FQHSs), and the related magnetic-flux-electron composite fermions (CFs), at very high magnetic fields in the extreme quantum limit when only the lowest Landau level is occupied. Unlike in other multivalley two-dimensional electron systems such as Si or monolayer graphene and transition-metal dichalcogenides, in our AlAs sample we can continuously tune the valley polarization via the application of in-situ strain. We find that the FQHSs remain exceptionally strong even as they make valley polarization transitions, revealing a surprisingly robust ferromagnetism of the FQHSs and the underlying CFs. Our observation implies that the CFs are strongly interacting in our system. We are also able to obtain a phase diagram for the FQHS and CF valley polarization in the extreme quantum limit as we monitor transitions of the FHQSs with different valley polarizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源