论文标题
半竞争风险数据的自适应山脊回归损坏的变量选择数据
Penalized Variable Selection with Broken Adaptive Ridge Regression for Semi-competing Risks Data
论文作者
论文摘要
当模型中考虑非末端和终端事件时,就会出现半竞争风险数据。在医学研究和临床试验中,经常遇到具有多个感兴趣事件的数据。在此框架中,终端事件可以审查非末端事件,但反之亦然。众所周知,在高维数据中识别重要的风险因素方面是实用的。虽然一些有关惩罚变量选择的最新作品分别与这些竞争风险分别交易而不结合它们之间的相关性,但我们使用共同的脆弱性在疾病死亡模型中执行可变选择,其中使用半参数危害回归模型来建模协变量的效果。我们提出了一个损坏的自适应山脊(BAR)处罚,以鼓励稀疏性并进行广泛的模拟研究,以将其性能与其他流行方法进行比较。我们以特定方式进行可变选择,以便可以估算和选择潜在的风险因素和协变量效应,同时与研究中的每个事件相对应。使用仿真研究研究了拟议条形图的分组效应以及所提出的条形图的甲骨文效果。然后将所提出的方法应用于由结肠癌研究引起的现实生活数据。
Semi-competing risks data arise when both non-terminal and terminal events are considered in a model. Such data with multiple events of interest are frequently encountered in medical research and clinical trials. In this framework, terminal event can censor the non-terminal event but not vice versa. It is known that variable selection is practical in identifying significant risk factors in high-dimensional data. While some recent works on penalized variable selection deal with these competing risks separately without incorporating possible correlation between them, we perform variable selection in an illness-death model using shared frailty where semiparametric hazard regression models are used to model the effect of covariates. We propose a broken adaptive ridge (BAR) penalty to encourage sparsity and conduct extensive simulation studies to compare its performance with other popular methods. We perform variable selection in an event specific manner so that the potential risk factors and covariates effects can be estimated and selected, simultaneously corresponding to each event in the study. The grouping effect, as well as the oracle property of the proposed BAR procedure are investigated using simulation studies. The proposed method is then applied to real-life data arising from a Colon Cancer study.