论文标题
光子带结构的非热拓扑不变
Non-Hermitian topological invariant of photonic band structures undergoing inversion
论文作者
论文摘要
对称性和拓扑之间的相互作用导致在遗传学系统中发现了对称性保护的拓扑阶段,包括拓扑绝缘子和拓扑超导体。然而,非温米特系统的内在对称性保护拓扑特征仍在等待探索。在这里,我们通过实验研究了与光学晶格中非铁谱带结构反转相关的拓扑转变。有趣的是,我们证明了与连续体中与对称性保护的结合状态相关的绕组数不是频段反转后的保守数量。为了定义拓扑不变的,我们提出了通过在动量空间中产卵给出的天空数量,其伪旋转将极化涡流为平面成分,而带索引是原点的伪旋转方向。这导致通过频段倒置从抗候位到类似梅隆的纹理的拓扑过渡,同时始终保存半电荷的天空数。我们预见到使用Skyrmion数量来探索各种非热门物理系统中的外来奇异性。
The interplay between symmetry and topology led to the discovery of symmetry-protected topological phases in Hermitian systems, including topological insulators and topological superconductors. However, the intrinsic symmetry-protected topological characteristics of non-Hermitian systems still await exploration. Here, we investigate experimentally the topological transition associated with the inversion of non-Hermitian band structures in an optical lattice. Intriguingly, we demonstrate that the winding number associated with the symmetry-protected bound state in the continuum is not a conserved quantity after band inversion. To define a topological invariant, we propose the skyrmion number given by spawning in momentum space a pseudo-spin with the polarisation vortex as the in-plane component and the band-index as the pseudo-spin direction at the origin. This leads to a topological transition from an antimeron to an meron-like texture through band inversion, while always conserving the half-charge skyrmion number. We foresee the use of skyrmion number to explore exotic singularities in various non-Hermitian physical system.