论文标题

$(p,q)$ - 弹性冲突模型的扩展

Extensions of the $(p,q)$-Flexible-Graph-Connectivity model

论文作者

Bansal, Ishan, Cheriyan, Joseph, Grout, Logan, Ibrahimpur, Sharat

论文摘要

我们在与$(P,Q)$ -FGC模型有关的某些模型中提出了网络设计问题的近似算法。 Adjisshvili,Hommelsheim和Mühlenthaler引入了FGC表示的灵活图连接模型。博伊德(Boyd),切里扬(Cheriyan),哈达丹(Hadadan)和易卜拉欣(Ibrahimpur)引入了FGC的概括。令$ p \ geq 1 $和$ q \ geq 0 $为整数。在$(p,q)$ - 灵活的图形连接问题的情况下,表示$(p,q)$ - fgc,我们有一个无方向的连接图$ g =(v,e)$,将$ e $的分区分为一组安全边缘,并在一组不安全的边缘和一组不安全的边缘,以及一组不使用的边缘,以及$ c \ ceq in \ mathbb $ geq in \ geq $ geq 0}如果对于任何一组不安全的边缘,$ f'u $,带有$ | f'| \ leq q $,子graph $(v,v,f \ setminus f'),子集$ f \ subseteq e $对于$(p,q)$ - fgc问题是可行的(p,q)$ -FGC问题。算法目标是找到一个可行的边缘$ f $,该$ f $最小化$ c(f)= \ sum_ {e \ in F} c_e $。

We present approximation algorithms for network design problems in some models related to the $(p,q)$-FGC model. Adjiashvili, Hommelsheim and Mühlenthaler introduced the model of Flexible Graph Connectivity that we denote by FGC. Boyd, Cheriyan, Haddadan and Ibrahimpur introduced a generalization of FGC. Let $p\geq 1$ and $q\geq 0$ be integers. In an instance of the $(p,q)$-Flexible Graph Connectivity problem, denoted $(p,q)$-FGC, we have an undirected connected graph $G = (V,E)$, a partition of $E$ into a set of safe edges and a set of unsafe edges, and nonnegative costs $c\in\mathbb{R}_{\geq0}^E$ on the edges. A subset $F \subseteq E$ of edges is feasible for the $(p,q)$-FGC problem if for any set of unsafe edges, $F'$, with $|F'|\leq q$, the subgraph $(V, F \setminus F')$ is $p$-edge connected. The algorithmic goal is to find a feasible edge-set $F$ that minimizes $c(F) = \sum_{e \in F} c_e$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源