论文标题
使用离散的Harris Hawks优化算法和邻居侦察策略来影响社交网络中的最大化
Influence Maximization in Social Networks using Discretized Harris Hawks Optimization Algorithm and Neighbour Scout Strategy
论文作者
论文摘要
影响最大化(IM)是确定社交网络中K最佳影响力节点的任务,以使用传播模型最大程度地利用影响力传播。 IM是病毒式营销的一个突出问题,在社交媒体广告中有很大帮助。但是,开发有效的算法对现实世界社交网络的时间复杂性最少仍然是一个挑战。尽管已经采用了传统的启发式方法来进行IM,但它们通常会导致基于计算昂贵的贪婪和反向影响基于采样的方法的性能最小。在本文中,我们提出了使用社区结构的自然启发的哈里斯鹰的离散化优化元式算法,以最佳选择种子节点以进行影响扩散。除了哈里斯·霍克斯(Harris Hawks)的情报外,我们还采用邻居侦察策略算法来避免失明并增强鹰的搜索能力。此外,我们使用基于候选节点的随机群体初始化方法,这些候选节点有助于加速整个民众的收敛过程。我们使用独立的级联模型来评估我们提出的DHHO方法在六个社交网络上的功效。我们观察到,DHHO比五个指标的最大化竞争性元神灵方法可比性或更好,并且比竞争启发式方法更好。
Influence Maximization (IM) is the task of determining k optimal influential nodes in a social network to maximize the influence spread using a propagation model. IM is a prominent problem for viral marketing, and helps significantly in social media advertising. However, developing effective algorithms with minimal time complexity for real-world social networks still remains a challenge. While traditional heuristic approaches have been applied for IM, they often result in minimal performance gains over the computationally expensive Greedy-based and Reverse Influence Sampling-based approaches. In this paper, we propose the discretization of the nature-inspired Harris Hawks Optimisation meta-heuristic algorithm using community structures for optimal selection of seed nodes for influence spread. In addition to Harris Hawks intelligence, we employ a neighbour scout strategy algorithm to avoid blindness and enhance the searching ability of the hawks. Further, we use a candidate nodes-based random population initialization approach, and these candidate nodes aid in accelerating the convergence process for the entire populace. We evaluate the efficacy of our proposed DHHO approach on six social networks using the Independent Cascade model for information diffusion. We observe that DHHO is comparable or better than competing meta-heuristic approaches for Influence Maximization across five metrics, and performs noticeably better than competing heuristic approaches.