论文标题

RDRN:图像超分辨率的递归定义的剩余网络

RDRN: Recursively Defined Residual Network for Image Super-Resolution

论文作者

Panaetov, Alexander, Daou, Karim Elhadji, Samenko, Igor, Tetin, Evgeny, Ivanov, Ilya

论文摘要

深度卷积神经网络(CNN)在单像超分辨率(SISR)中获得了出色的性能。但是,非常深的网络可能会遭受训练困难,几乎无法获得进一步的绩效增长。要解决这个问题的主要趋势有两个主要趋势:改善网络体系结构,通过大量层来更好地传播特征,并设计一种选择最有用的功能的注意机制。最近的SISR解决方案提出了高级注意力和自我注意力的机制。但是,以最有效的方式构建网络以使用注意力障碍是一个具有挑战性的问题。为了解决这个问题,我们提出了一个递归定义的一般剩余块(RDRB),以更好地提取和通过网络层传播。基于RDRB,我们设计了递归定义的残差网络(RDRN),这是一种新型的网络体系结构,利用了注意力障碍。广泛的实验表明,所提出的模型可在几种流行的超分辨率基准和表现以前的方法上的最新结果上实现最新的结果,最高可达0.43 dB。

Deep convolutional neural networks (CNNs) have obtained remarkable performance in single image super-resolution (SISR). However, very deep networks can suffer from training difficulty and hardly achieve further performance gain. There are two main trends to solve that problem: improving the network architecture for better propagation of features through large number of layers and designing an attention mechanism for selecting most informative features. Recent SISR solutions propose advanced attention and self-attention mechanisms. However, constructing a network to use an attention block in the most efficient way is a challenging problem. To address this issue, we propose a general recursively defined residual block (RDRB) for better feature extraction and propagation through network layers. Based on RDRB we designed recursively defined residual network (RDRN), a novel network architecture which utilizes attention blocks efficiently. Extensive experiments show that the proposed model achieves state-of-the-art results on several popular super-resolution benchmarks and outperforms previous methods by up to 0.43 dB.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源