论文标题
核能量密度的核和不均匀物质的费米操作员扩展方法
Fermi operator expansion method for nuclei and inhomogeneous matter with nuclear energy density functional
论文作者
论文摘要
有限温度下的核能密度功能方法是对高激发时核结构研究的有用工具,也用于研究爆炸性恒星现象和中子恒星所涉及的核物质。但是,其不受限制的计算需要三维坐标空间求解器的计算成本,尤其是对于汉密尔顿基质对角度化和(或)单粒子波函数的革兰氏阴性正统计化。我们测试了Fermi操作员扩展方法的数值性能,该方法既不需要对角度化和革兰氏链正顺式化,以进行有限的核和不均匀的核物质。该方法适用于孤立的有限n = Z核,并在有限温度下适用于非均匀的对称核物质,事实证明,这对于三维坐标空间表示非常有效,尤其是在高温下。费米操作员扩展方法是在有限温度下使用能量密度功能计算的各种核相的有用工具。该方法适用于具有分布式内存的大规模并行计算。此外,当空间尺寸较大时,计算可能会受益于其订单-N缩放属性。
The nuclear energy density functional method at finite temperature is a useful tool for studies of nuclear structure at high excitation, and also for researches of nuclear matter involved in explosive stellar phenomena and neutron stars. However, its unrestricted calculation requires large computational costs for the three-dimensional coordinate-space solvers, especially for the Hamiltonian matrix diagonalization and (or) the Gram-Schmidt orthonormalization of the single-particle wave functions. We test numerical performance of the Fermi operator expansion method, that requires neither the diagonalization nor the Gram-Schmidt orthonormalization, for finite nuclei and inhomogeneous nuclear matter. The method is applied to isolated finite N=Z nuclei and to non-uniform symmetric nuclear matter at finite temperature, which turns out be very effective with the three-dimensional coordinate-space representation, especially at high temperature. The Fermi operator expansion method is a useful tool for studies of various nuclear phases at finite temperature with the energy density functional calculations. The method is suitable for massively parallel computing with distributed memory. Furthermore, when the space size is large, the calculation may benefit from its order-N scaling property.