论文标题

$ g(R,P,N)$的广义templeley-lieb代数

Generalised Temperley-Lieb algebras of type $G(r,p,n)$

论文作者

Lehrer, Gus, Lyu, Mengfan

论文摘要

在较早的工作中,我们定义了``广泛的temperley-lieb代数''$ tl_ {r,1,n} $,与不良反射组$ g(r,1,n)$相对应为Cyclotomic Hecke algebra的商。在这项工作中,我们介绍了广泛的templeley-lieb代数$ tl_ {r,p,n} $,该$对应于复杂的反射组$ g(r,p,p,n)$。我们的定义将$ tl_ {r,p,n} $确定为$ tl_ {r,1,n} $的定点子级,在某个自动形态$σ$下。我们证明$σ$相对于$ tl_ {r,1,n} $的蜂窝结构,证明了$ tl_ {r,p,n} $的细胞性。我们还对$ tl_ {r,p,n} $的细胞模块及其分解数字进行了描述,最后我们指出了我们的代数如何被分类并可能导致图表理论。

In an earlier work, we defined a ``generalised Temperley-Lieb algebra'' $TL_{r,1,n}$ corresponding to the imprimitive reflection group $G(r,1,n)$ as a quotient of the cyclotomic Hecke algebra. In this work we introduce the generalised Temperley-Lieb algebra $TL_{r,p,n}$ which corresponds to the complex reflection group $G(r,p,n)$. Our definition identifies $TL_{r,p,n}$ as the fixed-point subalgebra of $TL_{r,1,n}$ under a certain automorphism $σ$. We prove the cellularity of $TL_{r,p,n}$ by proving that $σ$ induces a special shift automorphism with respect to the cellular structure of $TL_{r,1,n}$. We also give a description of the cell modules of $TL_{r,p,n}$ and their decomposition numbers, and finally we point to how our algebras might be categorified and could lead to a diagrammatic theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源