论文标题

针对广义学习和零射门学习的针对性

Targeted Attention for Generalized- and Zero-Shot Learning

论文作者

Suprem, Abhijit

论文摘要

零射击学习(ZSL)任务尝试学习概念而无需任何标记的数据。与传统的分类/检测任务不同,评估环境是在培训期间从未遇到过的看不见的类别的。因此,它仍然具有挑战性,而且在各种方面都有希望,包括无监督的概念学习,域的适应性和数据集漂移检测。最近,已经采用了多种解决ZSL的方法,包括改进的度量学习方法,转移学习,使用语义和图像域的组合,例如单词向量和生成模型,以模拟已知类的潜在空间以对看不见的类进行分类。我们发现许多方法都需要使用属性或特征通常不可用的属性或功能(基于属性的学习)或容易受到对抗性攻击(生成学习)的影响。我们提出了相关人员重新识别任务的合并方法,并进行了关键修改,以确保ZSL设置中的性能足够改善,而无需功能或培训数据集扩展。与最近的作品相比,我们能够在ZSL设置中的CUB200和CARS196数据集上实现最先进的性能,而Cub200的NMI(归一化相互推断)为63.27,TOP-1为61.04,而NMI 66.03在CARS196中,TOP-1 82.75%。我们还显示了最先进的结果,该结果在广义的零局学习(GZSL)设置中,在Cub200数据集中谐波平均R-1为66.14%。

The Zero-Shot Learning (ZSL) task attempts to learn concepts without any labeled data. Unlike traditional classification/detection tasks, the evaluation environment is provided unseen classes never encountered during training. As such, it remains both challenging, and promising on a variety of fronts, including unsupervised concept learning, domain adaptation, and dataset drift detection. Recently, there have been a variety of approaches towards solving ZSL, including improved metric learning methods, transfer learning, combinations of semantic and image domains using, e.g. word vectors, and generative models to model the latent space of known classes to classify unseen classes. We find many approaches require intensive training augmentation with attributes or features that may be commonly unavailable (attribute-based learning) or susceptible to adversarial attacks (generative learning). We propose combining approaches from the related person re-identification task for ZSL, with key modifications to ensure sufficiently improved performance in the ZSL setting without the need for feature or training dataset augmentation. We are able to achieve state-of-the-art performance on the CUB200 and Cars196 datasets in the ZSL setting compared to recent works, with NMI (normalized mutual inference) of 63.27 and top-1 of 61.04 for CUB200, and NMI 66.03 with top-1 82.75% in Cars196. We also show state-of-the-art results in the Generalized Zero-Shot Learning (GZSL) setting, with Harmonic Mean R-1 of 66.14% on the CUB200 dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源