论文标题
关于卡莱的$ 3^d $猜想的注释
A note on Kalai's $3^d$ Conjecture
论文作者
论文摘要
假设$ c $是一个集中对称的$ d $ d $二维凸polytope; 1989年,卡莱(Kalai)猜想$ c $至少有$ 3^d $ facets。如果有$ d $ hyperplanes带有正交正常向量,因此我们证明了这一结果,以使$ c $对所有这些媒介对称。
Suppose that $C$ is a centrally symmetric $d$-dimensional convex polytope; in 1989 Kalai conjectured that $C$ has at least $3^d$ facets. We prove this result if there are $d$ hyperplanes with orthogonal normal vectors so that $C$ is symmetric about all of them.