论文标题

关于卡莱的$ 3^d $猜想的注释

A note on Kalai's $3^d$ Conjecture

论文作者

Chambers, Gregory R., Portnoy, Elia

论文摘要

假设$ c $是一个集中对称的$ d $ d $二维凸polytope; 1989年,卡莱(Kalai)猜想$ c $至少有$ 3^d $ facets。如果有$ d $ hyperplanes带有正交正常向量,因此我们证明了这一结果,以使$ c $对所有这些媒介对称。

Suppose that $C$ is a centrally symmetric $d$-dimensional convex polytope; in 1989 Kalai conjectured that $C$ has at least $3^d$ facets. We prove this result if there are $d$ hyperplanes with orthogonal normal vectors so that $C$ is symmetric about all of them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源