论文标题
部分可观测时空混沌系统的无模型预测
A Review of Intelligent Music Generation Systems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
With the introduction of ChatGPT, the public's perception of AI-generated content (AIGC) has begun to reshape. Artificial intelligence has significantly reduced the barrier to entry for non-professionals in creative endeavors, enhancing the efficiency of content creation. Recent advancements have seen significant improvements in the quality of symbolic music generation, which is enabled by the use of modern generative algorithms to extract patterns implicit in a piece of music based on rule constraints or a musical corpus. Nevertheless, existing literature reviews tend to present a conventional and conservative perspective on future development trajectories, with a notable absence of thorough benchmarking of generative models. This paper provides a survey and analysis of recent intelligent music generation techniques, outlining their respective characteristics and discussing existing methods for evaluation. Additionally, the paper compares the different characteristics of music generation techniques in the East and West as well as analysing the field's development prospects.