论文标题

部分可观测时空混沌系统的无模型预测

Real-time quantum error correction beyond break-even

论文作者

Sivak, V. V., Eickbusch, A., Royer, B., Singh, S., Tsioutsios, I., Ganjam, S., Miano, A., Brock, B. L., Ding, A. Z., Frunzio, L., Girvin, S. M., Schoelkopf, R. J., Devoret, M. H.

论文摘要

利用量子进行计算的野心与腐烂的基本现象不符。量子误差校正(QEC)的目的是抵消复杂系统破裂的自然趋势。需要参与多个量子和经典组成部分的合作过程,创造了一种特殊的耗散类型,该耗散可以消除由错误造成的熵,而这些错误的速度比这些错误损坏了存储的量子信息的速率。以前的实验尝试来设计这样的过程面临过多产生的错误,从而使过程本身的错误校正能力不堪重负。因此,实际上是否可以利用QEC扩展量子相干仍然是一个悬而未决的问题。我们通过证明完全稳定和错误校正的逻辑量子量子的回答,其量子相干性明显长于QEC工艺所涉及的所有不完美的量子成分中的量子,并以$ G = 2.27 \ pm 0.07 $的连贯性增益来击败它们中的最好的量子。我们通过在多个领域中结合创新来实现这一绩效,包括制造超导量子电路和无模型的增强学习。

The ambition of harnessing the quantum for computation is at odds with the fundamental phenomenon of decoherence. The purpose of quantum error correction (QEC) is to counteract the natural tendency of a complex system to decohere. This cooperative process, which requires participation of multiple quantum and classical components, creates a special type of dissipation that removes the entropy caused by the errors faster than the rate at which these errors corrupt the stored quantum information. Previous experimental attempts to engineer such a process faced an excessive generation of errors that overwhelmed the error-correcting capability of the process itself. Whether it is practically possible to utilize QEC for extending quantum coherence thus remains an open question. We answer it by demonstrating a fully stabilized and error-corrected logical qubit whose quantum coherence is significantly longer than that of all the imperfect quantum components involved in the QEC process, beating the best of them with a coherence gain of $G = 2.27 \pm 0.07$. We achieve this performance by combining innovations in several domains including the fabrication of superconducting quantum circuits and model-free reinforcement learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源