论文标题

二维固定$ q $价值的内部规律性

Interior regularity for two-dimensional stationary $Q$-valued maps

论文作者

Hirsch, Jonas, Spolaor, Luca

论文摘要

我们证明,$ 2 $维$ q $ - 价值的地图相对于Dirichlet Energy的外部和内部变化是固定的,这是Hölder的连续,并且其单数集的尺寸最多是一个。在证明过程中,我们为仅相对于外部变化而固定的等效图建立了强浓度 - 纯度定理,并且在每个维度中都有。

We prove that $2$-dimensional $Q$-valued maps that are stationary with respect to outer and inner variations of the Dirichlet energy are Hölder continuous and that the dimension of their singular set is at most one. In the course of the proof we establish a strong concentration-compactness theorem for equicontinuous maps that are stationary with respect to outer variations only, and which holds in every dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源