论文标题

深度学习不均匀相关量子系统中的空间密度

Deep learning of spatial densities in inhomogeneous correlated quantum systems

论文作者

Blania, Alex, Herbig, Sandro, Dechent, Fabian, van Nieuwenburg, Evert, Marquardt, Florian

论文摘要

机器学习在帮助改善量子多体系统的处理方面取得了重要的进展。具有特定相关性的领域是相关的不均匀系统。到目前为止,已经缺少的是一种通用的,可扩展的深度学习方法,它将能够快速预测空间密度,以实现任意电位中强相关系统的强烈相关系统。在这项工作中,我们提出了一个直接的方案,我们学会使用经过随机电位训练的卷积神经网络来预测密度。虽然我们使用量子蒙特卡洛(Monte Carlo)等数值技术中的数据在1D和2D晶格模型中证明了这种方法,但它也直接适用于从实验量子模拟器中获得的训练数据。我们训练可以同时预测多个可观察到的密度,并且可以预测一类多体晶格模型的密度,以预测任意系统大小的多体晶格模型。我们表明,我们的方法可以很好地处理干扰和相互作用的相互作用以及模型与相位过渡情况的行为,并且我们还说明了解决反问题的能力,从而发现了所需密度的潜力。

Machine learning has made important headway in helping to improve the treatment of quantum many-body systems. A domain of particular relevance are correlated inhomogeneous systems. What has been missing so far is a general, scalable deep-learning approach that would enable the rapid prediction of spatial densities for strongly correlated systems in arbitrary potentials. In this work, we present a straightforward scheme, where we learn to predict densities using convolutional neural networks trained on random potentials. While we demonstrate this approach in 1D and 2D lattice models using data from numerical techniques like Quantum Monte Carlo, it is directly applicable as well to training data obtained from experimental quantum simulators. We train networks that can predict the densities of multiple observables simultaneously and that can predict for a whole class of many-body lattice models, for arbitrary system sizes. We show that our approach can handle well the interplay of interference and interactions and the behaviour of models with phase transitions in inhomogeneous situations, and we also illustrate the ability to solve inverse problems, finding a potential for a desired density.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源